La Hipérbola
LA HIPÉRBOLA
La hipérbola es el lugar geométrico de los puntos del plano cuya diferencia de distancias a los puntos fijos llamados focos es constante en valor absoluto.
En la gráfica anterior, esto significa que para cualquier punto de la hipérbola.
Elementos de la hipérbola:
- Focos: Son los puntos fijos y .
- Eje focal, principal o real: Es la recta que pasa por los focos.
- Eje secundario o imaginario: Es la mediatriz del segmento .
- Centro: Es el punto de intersección de los ejes.
- Vértices: Los puntos y son los puntos de intersección de la hipérbola con el eje focal.
- Radios vectores: Son los segmentos que van desde un punto de la hipérbola a los focos: y .
- Distancia focal: Es el segmento de longitud .
- Eje mayor: Es el segmento de longitud .
- Eje menor: Es el segmento de longitud . Los puntos y se obtienen como intersección del eje imaginario con la circunferencia que tiene por centro uno de los vértices y de radio .
- Ejes de simetría: Son las rectas que contienen al eje real o al eje imaginario.
- Asintotas: Son las rectas de ecuaciones:
- Relación entre los semiejes:
Excentricidad de la hipérbola
La excentricidad es un parámetro que indica la abertura de la hipérbola. Este número, en el caso de las hipérbolas, siempre es mayor que .
Ejemplos:
- Hipérbola con excentricidad
- Hipérbola con excentricidad .Esta hipérbola recibe el nombre de hipérbola equilatera pues sus asíntotas están dadas por
- Hipérbola con excentricidad
- Hipérbola con excentricidad
Comentarios
Publicar un comentario